Riemannian geometry for the statistical analysis of diffusion tensor data

نویسندگان

  • P. Thomas Fletcher
  • Sarang C. Joshi
چکیده

The tensors produced by diffusion tensor magnetic resonance imaging (DTMRI) represent the covariance in a Brownian motion model of water diffusion. Under this physical interpretation, diffusion tensors are required to be symmetric, positive-definite. However, current approaches to statistical analysis of diffusion tensor data, which treat the tensors as linear entities, do not take this positivedefinite constraint into account. This difficulty is due to the fact that the space of diffusion tensors does not form a vector space. In this paper we show that the space of diffusion tensors is a type of curved manifold known as a Riemannian symmetric space. We then develop methods for producing statistics, namely averages and modes of variation, in this space. We show that these statistics preserve natural geometric properties of the tensors, including the constraint that their eigenvalues be positive. The symmetric space formulation also leads to a natural definition for interpolation of diffusion tensors and a new measure of anisotropy. We expect that these methods will be useful in the registration of diffusion tensor images, the production of statistical atlases from diffusion tensor data, and the quantification of the anatomical variability caused by disease. The framework presented in this paper should also be useful in other applications where symmetric, positive-definite tensors arise, such as mechanics and computer vision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Correlation Analysis on Riemannian Manifolds and Its Applications

Canonical correlation analysis (CCA) is a widely used statistical technique to capture correlations between two sets of multi-variate random variables and has found a multitude of applications in computer vision, medical imaging and machine learning. The classical formulation assumes that the data live in a pair of vector spaces which makes its use in certain important scientific domains proble...

متن کامل

An anisotropy preserving metric for DTI processing

Statistical analysis of Diffusion Tensor Imaging (DTI) data requires a computational framework that is both numerically tractable (to account for the high dimensional nature of the data) and geometric (to account for the nonlinear nature of diffusion tensors). Building upon earlier studies that have shown that a Riemannian framework is appropriate to address these challenges, the present paper ...

متن کامل

Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in...

متن کامل

Statistical Variability in Nonlinear Spaces: Application to Shape Analysis and DT-MRI

P. THOMAS FLETCHER: Statistical Variability in Nonlinear Spaces: Application to Shape Analysis and DT-MRI. (Under the direction of Stephen M. Pizer and Sarang Joshi.) Statistical descriptions of anatomical geometry play an important role in many medical image analysis applications. For instance, geometry statistics are useful in understanding the structural changes in anatomy that are caused by...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2007